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Massive present-day early-type (elliptical and lenticular) galaxies
probably gained the bulk of their stellar mass and heavy elements
through intense, dust-enshrouded starbursts—that is, increased
rates of star formation—in the most massive dark-matter haloes
at early epochs. However, it remains unknown how soon after the
Big Bang massive starburst progenitors exist. The measured red-
shift (z) distribution of dusty, massive starbursts has long been
suspected to be biased low in z owing to selection effects1, as con-
firmed by recent findings of systems with redshifts as high as 5
(refs 2–4). Here we report the identification of a massive starburst
galaxy at z 5 6.34 through a submillimetre colour-selection tech-
nique. We unambiguously determined the redshift from a suite of
molecular and atomic fine-structure cooling lines. These measure-
ments reveal a hundred billion solar masses of highly excited,
chemically evolved interstellar medium in this galaxy, which con-
stitutes at least 40 per cent of the baryonic mass. A ‘maximum
starburst’ converts the gas into stars at a rate more than 2,000 times
that of the Milky Way, a rate among the highest observed at any
epoch. Despite the overall downturn in cosmic star formation
towards the highest redshifts5, it seems that environments mature
enough to form the most massive, intense starbursts existed at least
as early as 880 million years after the Big Bang.

We have searched 21 deg2 of the Herschel/SPIRE data of the
HerMES blank field survey6 at wavelengths 250–500mm for ‘ultra-
red’ sources with flux densities S250mm , S350mm , S500mm and S500mm/
S350mm . 1.3, that is, galaxies that are significantly redder (and thus,
potentially at higher redshift) than massive starbursts discovered thus
far. This selection yields five candidate ultra-red sources down to a flux
limit of 30 mJy at 500mm (.5s and above the confusion noise; see
Supplementary Information section 1 for additional details), corres-
ponding to a source density of #0.24 deg22. For comparison, models

of number counts in the Herschel/SPIRE bands suggest a space
density of massive starburst galaxies at z . 6 with S500mm . 30 mJy
of 0.014 deg22 (ref. 7).

To understand the nature of galaxies selected by this technique, we
have obtained full frequency scans of the 3-mm and 1-mm bands
towards HFLS 3 (also known as 1HERMES S350 J170647.81584623;
S500mm/S350mm 5 1.45), the brightest candidate discovered in our study.
These observations, augmented by selected follow-up over a broader
wavelength range, unambiguously determine the galaxy redshift to be
z 5 6.3369 6 0.0009 based on a suite of 7 CO lines, 7 H2O lines, and
OH, OH1, H2O1, NH3, [C I] and [C II] lines detected in emission and
absorption (Fig. 1). At this redshift, the Universe was just 880 million
years old (or one-sixteenth of its present age), and 10 on the sky corre-
sponds to a physical scale of 5.6 kpc. Further observations from optical
to radio wavelengths reveal strong continuum emission over virtually
the entire wavelength range between 2.2mm and 20 cm, with no
detected emission shortward of 1mm (see Supplementary Informa-
tion section 2 and Supplementary Figs 1–11 for additional details).

HFLS 3 hosts an intense starburst. The 870-mm flux of HFLS 3 is
.3.5 times higher than those of the brightest high-redshift starbursts
in a 0.25-deg2 region containing the Hubble Ultra Deep Field (HUDF)8.
From the continuum spectral energy distribution (Fig. 2), we find that
the far-infrared (FIR) luminosity LFIR and inferred star formation rate
(SFR) of 2,900 Msun yr21 of HFLS 3 (where Msun is the solar mass) are 15–
20 times those of the prototypical local ultra-luminous starburst Arp 220,
and .2,000 times those of the Milky Way (Table 1 and Supplementary
Information section 3). The SFR of HFLS 3 alone corresponds to ,4.5
times the ultraviolet-based SFR of all z 5 5.5–6.5 star-forming galaxies in
the HUDF combined9, but the rarity and dust obscuration of ultra-red
sources like HFLS 3 implies that they do not dominate the ultraviolet
photon density needed to reionize the Universe10.
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HFLS 3 is a massive, gas-rich galaxy. From the spectral energy distri-
bution and the intensity of the CO and [C II] emission, we find a dust
mass of Md 5 1.33 109 Msun and total molecular and atomic gas masses
of respectively Mgas 5 1.0 3 1011 Msun and MHI 5 2.0 3 1010 Msun. These
masses are 15–20 times those of Arp 220, and correspond to a gas-to-
dust ratio of ,80 and a gas depletion timescale of Mgas/SFR < 36 Myr.
These values are comparable to lower-redshift submillimetre-selected
starbursts11,12. From the [C I] luminosity, we find an atomic carbon mass
of 4.5 3 107 Msun. At the current SFR of HFLS 3, this level of carbon
enrichment could have been achieved through supernovae on a timescale
of ,107 yr (ref. 13). The profiles of the molecular and atomic emission
lines typically show two velocity components (Fig. 1 and Supplementary
Figs 5 and 7). The gas is distributed over a region of 1.7 kpc radius with a
high velocity gradient and dispersion (Fig. 3). This suggests a dispersion-
dominated galaxy with a dynamical mass of Mdyn 5 2.7 3 1011 Msun. The

gas mass fraction in galaxies is a measure of the relative depletion and
replenishment of molecular gas, and is expected to be a function of halo
mass and redshift from simulations14. In HFLS 3, we find a high gas mass
fraction of fgas 5 Mgas/Mdyn < 40%, comparable to what is found in sub-
millimetre-selected starbursts and massive star-forming galaxies at z < 2
(refs 15, 16), but ,3 times higher than in nearby ultra-luminous infrared
galaxies (ULIRGs) like Arp 220, and .30 times higher than in the Milky
Way. From population synthesis modelling, we find a stellar mass of
M*5 3.7 3 1010 Msun, comparable to that of Arp 220 and about half that
of the Milky Way. This suggests that at most ,40% of Mdyn within the
radius of the gas reservoir is due to dark matter. With up to ,1011 Msun of
dark matter within 3.4 kpc, HFLS 3 is likely to reside in a dark-matter halo
massive enough to grow a present-day galaxy cluster17. The efficiency
of star formation is given by e 5 tdyn 3 SFR/Mgas, where tdyn 5 (r3/
(2GM))1/2 is the dynamical (or free-fall) time, r is the source radius,
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Figure 1 | Redshift identification through molecular and atomic
spectroscopy of HFLS 3. a, Black trace, wide-band spectroscopy in the
observed-frame 19–0.95-mm (histogram; rest-frame 2,600–130mm)
wavelength range with CARMA (3 mm; ‘blind’ frequency scan of the full band),
the PdBI (2 mm), the JVLA (19–6 mm) and CSO/Z-spec (1 mm; instantaneous
coverage). (CARMA, Combined Array for Research in Millimeter-wave
Astronomy; PdBI, Plateau de Bure Interferometer; JVLA, Jansky Very Large
Array; and CSO, Caltech Submillimeter Observatory.) This uniquely
determines the redshift of HFLS 3 to be z 5 6.3369 based on the detection of a
series of H2O, CO, OH, OH1, NH3, [C I] and [C II] emission and absorption
lines. b–o, Detailed profiles of detected lines (histograms; rest frequencies are
indicated by corresponding letters in a). 1-mm lines (m–o) are deeper,
interferometric confirmation observations for NH3, OH (both PdBI) and [C II]

(CARMA) not shown in a. The line profiles are typically asymmetric relative to
single Gaussian fits, indicating the presence of two principal velocity
components at redshifts of 6.3335 and 6.3427. The implied CO, [C I] and [C II]
line luminosities are respectively (5.08 6 0.45) 3 106 Lsun,
(3.0 6 1.9) 3 108 Lsun and (1.55 6 0.32) 3 1010 Lsun. Strong rest-frame
submillimetre to FIR continuum emission is detected over virtually the entire
wavelength range. For comparison, the Herschel/SPIRE spectrum of the nearby
ultra-luminous infrared galaxy Arp 22020 is overplotted in grey (a). Lines
labelled in italic are tentative detections or upper limits (see Supplementary
Table 2). Most of the bright spectral features detected in Arp 22020,21 are also
detected in HFLS 3 (in spectral regions not blocked by the terrestrial
atmosphere). See Supplementary Information sections 2–4 for more details.
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M is the mass within radius r and G is the gravitational constant. For
r 5 1.7 kpc and M 5 Mgas, this suggests e 5 0.06, which is a few times
higher than found in nearby starbursts and in giant molecular cloud cores
in the Galaxy18.

The properties of atomic and molecular gas in HFLS 3 are fully
consistent with a highly enriched, highly excited interstellar medium,

as typically found in the nuclei of warm, intense starbursts, but dis-
tributed over a large, ,3.5-kpc-diameter, region. The observed CO
and [C II] luminosities suggest that dust is the primary coolant of the
gas if both are thermally coupled. The L[CII]/LFIR ratio of ,5 3 1024 is
typical for high radiation environments in extreme starbursts and
active galactic nucleus (AGN) host galaxies19. The L[CII]/LCO(1–0) ratio
of ,3,000 suggests that the bulk of the line emission is associated with
the photon-dominated regions of a massive starburst. At the LFIR of
HFLS 3, this suggests an infrared radiation field strength and gas
density comparable to nearby ULIRGs without luminous AGN
(figures 4 and 5 of ref. 19).

From the spectral energy distribution of HFLS 3, we derive a dust
temperature of Tdust 5 56z9

{12K, ,10 K less than in Arp 220, but ,3
times that of the Milky Way. CO radiative transfer models assuming
collisional excitation suggest a gas kinetic temperature of Tkin 5

144z59
{30K and a gas density of log10(n(H2)) 5 3:80z0:28

{0:17 cm-3 (Sup-
plementary Information section 4 and Supplementary Figs 13 and 14).
These models suggest similar gas densities as in nearby ULIRGs, and
prefer Tkin?Tdust, which may imply that the gas and dust are not in
thermal equilibrium, and that the excitation of the molecular lines may be
partially supported by the underlying infrared radiation field. This is
consistent with the finding that we detect H2O and OH lines with upper
level energies of E/kB . 300–450 K and critical densities of .108.5 cm23

at line intensities exceeding those of the CO lines. The intensities and
ratios of the detected H2O lines cannot be reproduced by radiative trans-
fer models assuming collisional excitation, but are consistent with being
radiatively pumped by FIR photons, at levels comparable to those
observed in Arp 220 (Supplementary Figs 15 and 16)20,21. The CO and
H2O excitation is inconsistent with what is observed in quasar host
galaxies like Mrk 231 and APM 0827915255 at z 5 3.9, which lends
support to the conclusion that the gas is excited by a mix of collisions
and infrared photons associated with a massive, intense starburst, rather
than hard radiation associated with a luminous AGN22. The physical
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Figure 2 | Spectral energy distribution and Herschel/SPIRE colours of
HFLS 3. a, HFLS 3 was identified as a very high redshift candidate, as it appears
red between the Herschel/SPIRE 250-, 350- and 500-mm bands (inset). The
spectral energy distribution of the source (data points; lobs, observed-frame
wavelength; nrest, rest-frame frequency; AB mag, magnitudes in the AB system;
error bars are 1s r.m.s. uncertainties in both panels) is fitted with a modified
black body (MBB; solid line) and spectral templates for the starburst galaxies
Arp 220, M 82, HR 10 and the Eyelash (broken lines, see key). The implied FIR
luminosity is 2:86z0:32

{0:31 3 1013 Lsun. The dust in HFLS 3 is not optically thick at
wavelengths longward of rest-frame 162.7mm (95.4% confidence;
Supplementary Fig. 12). This is in contrast to Arp 220, in which the dust
becomes optically thick (that is, td 5 1) shortward of 234 6 3mm (ref. 20).
Other high-redshift massive starburst galaxies (including the Eyelash) typically
become optically thick around ,200mm. This suggests that none of the

detected molecular/fine-structure emission lines in HFLS 3 require correction
for extinction. The radio continuum luminosity of HFLS 3 is consistent with the
radio–FIR correlation for nearby star-forming galaxies. b, Flux density ratios
(350mm/250mm and 500mm/350mm) of HFLS 3. The coloured lines are the
same templates as in a, but redshifted between 1 , z , 8 (number labels
indicate redshifts). Dashed grey lines indicate the dividing lines for red
(S250mm , S350mm , S500mm) and ultra-red (S250mm , S350mm and
1.3 3 S350mm , S500mm) sources. Grey symbols show the positions of five
spectroscopically confirmed red sources at 4 , z , 5.5 (including three new
sources from our study), which all fall outside the ultra-red cut-off. This shows
that ultra-red sources will lie at z . 6 for typical shapes of the spectral energy
distribution (except those with low dust temperatures), whereas red sources
typically are at z , 5.5. See Supplementary Information sections 1 and 3 for
more details.

Table 1 | Observed and derived quantities for HFLS 3, Arp 220 and
the Milky Way

HFLS 3 Arp 220* Milky Way*

z 6.3369 0.0181
Mgas (Msun){ (1.04 6 0.09) 3 1011 5.2 3 109 2.5 3 109

Mdust (Msun){ 1:31z0:32
{0:30 3 109 ,1 3 108 ,6 3 107

M* (Msun)1 ,3.7 3 1010 ,(3–5) 3 1010 ,6.4 3 1010

Mdyn (Msun) || 2.7 3 1011 3.45 3 1010 2 3 1011 (,20 kpc)
fgas (%)" 40 15 1.2
LFIR (Lsun)# 2:86z0:32

{0:31 3 1013 1.8 3 1012 1.1 3 1010

SFR (Msun yr21)q 2,900 ,180 1.3
Tdust (K)** 55:9z9:3

{12:0
66 ,19

For details see Supplementary Information section 3.
*Literature values for Arp 220 and the Milky Way are adopted from refs 20 and 27–30. The total
molecular gasmass of the Milky Way is uncertain by at least a factor of 2. Quoteddust massesand stellar
masses are typically uncertain by factors of 2–3 owing to systematics. The dynamical mass for the Milky
Way is quoted within the inner 20 kpc to be comparable to the other systems, not probing the outer
regions dominated by dark matter. The dust temperature in the Milky Way varies by at least 65 K
around the quoted value, which is used as a representative value. Both Arp 220 and the Milky Way are
known to contain small fractions of significantly warmer dust. All errors are 1s r.m.s. uncertainties.
{Molecular gas mass, derived assuming aCO 5 Mgas/L9CO 5 1 Msun (K km s21 pc2)21 (see
Supplementary Information section 3.3).
{Dust mass, derived from spectral energy distribution fitting (see Supplementary Information section
3.1).
1 Stellar mass, derived from population synthesis fitting (see Supplementary Information section 3.4).
||Dynamical mass (see Supplementary Information section 3.5).
"Gas mass fraction, derived assuming fgas 5 Mgas/Mdyn (see Supplementary Information section 3.6).
#FIR luminosity as determined over the range of 42.5–122.5mm from spectral energy distribution
fitting (see Supplementary Information section 3.1).
qSFR, derived assuming SFR (in Msun yr21) 5 1.0 3 10210 LFIR (in Lsun) (see Supplementary
Information section 3.2).
**Dust temperature, derived from spectral energy distribution fitting (see Supplementary Information
section 3.1).
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conditions in the ISM of HFLS 3 thus are comparable to those in the
nuclei of the most extreme nearby starbursts, consistent with the finding
that it follows the radio–FIR correlation for star-forming galaxies.

HFLS 3 is rapidly assembling its stellar bulge through star formation
at surface densities close to the theoretically predicted limit for ‘max-
imum starbursts’23. At a rest-frame wavelength of 158mm, the FIR
emission is distributed over a relatively compact area with 2.6 kpc
3 2.4 kpc physical diameter along its major and minor axes respec-
tively (Fig. 3; as determined by elliptical Gaussian fitting). This sug-
gests an extreme SFR surface density of SSFR < 600 Msun yr21 kpc22

over a 1.3-kpc-radius region, and is consistent with near-Eddington-
limited star formation if the starburst disk is supported by radiation
pressure24. This suggests the presence of a kiloparsec-scale hyper-
starburst similar to that found in the z 5 6.42 quasar J114815251
(ref. 25). Such high SSFR are also observed in the nuclei of local
ULIRGs such as Arp 220, albeit on scales two orders of magnitude
smaller. A starburst at such high SSFR may produce strong winds.
Indeed, the relative strength and broad, asymmetric profile of the
OH 2P1/2(3/2–1/2) doublet detected in HFLS 3 may indicate a molecu-
lar outflow, reminiscent of the OH outflow in Arp 22021.

The identification of HFLS 3 alone is still consistent with the model-
predicted space density of massive starburst galaxies at z . 6 with
S500mm . 30 mJy of 0.014 deg22 (ref. 7). This corresponds to only
1023–1024 times the space density of Lyman-break galaxies at the
same redshift, but is comparable to the space density of the most
luminous quasars hosting supermassive black holes (that is, a different
population of massive galaxies) at such early cosmic times26. The host
galaxies around these very distant supermassive black holes are com-
monly FIR-luminous, but less intensely star-forming, with typically a
few times lower LFIR than ultra-red sources25. This highlights the dif-
ference between selecting massive z . 6 galaxies at the peak of their
star formation activity through LFIR, and at the peak of their black-hole
activity through luminous AGN. The substantial population of ultra-
red sources discovered with Herschel will be an ideal probe of early
galaxy evolution and heavy element enrichment within the first billion
years of cosmic time. These galaxies are unlikely to dominate the star
formation history of the Universe at z . 6 (ref. 5), but they trace the
highest peaks in SFR at early epochs. A detailed study of this galaxy
population will reveal the mass and redshift distribution, number
density and likely environments of such objects, which if confirmed

in larger numbers may present a stern challenge to current models of
early cosmic structure formation.
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